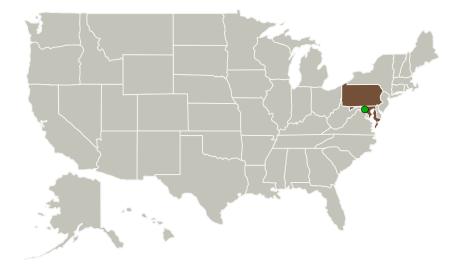
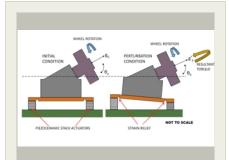
# Ultraprecision Pointing Accuracy for SmallSat/CubeSat Attitude Control Systems, Phase I





Completed Technology Project (2014 - 2014)

#### **Project Introduction**

The primary objective of the Phase I investigation is to develop and demonstrate an innovative solution that can enable very high precision pointing accuracy (<0.08 degree nominal; <0.03 degree extended goal) at fast slew rates; providing part of a advanced Smallsat/CubeSat precision attitude determination and control system (PADCS) that can meet emerging very stringent missions requirements. The Phase I program aim is to design and fabricate initial prototype hardware, including power electronics and Reaction Wheel Assembly (RWA) modifications as to demonstrating such positional accuracy capability, power cost (peak and average power consumption), slew rates and mass/volume cost of the new solution. A critical objective of Phase I will be to develop at the decoupled control architecture for the new multi-stage Attitude Control System ACS controller that will be modeled, simulated, and then converted to hardware prototype for Phase I assessments. This goal is to integrate this prototype controller into a multistage (ACS) design hardware emulation testbed and evaluate actual performance before conclusion of the program.

#### **Primary U.S. Work Locations and Key Partners**





Ultraprecision Pointing Accuracy for SmallSat/CubeSat Attitude Control Systems Project Image

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           | 2 |
| Images                        | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

# Ultraprecision Pointing Accuracy for SmallSat/CubeSat Attitude Control Systems, Phase I



Completed Technology Project (2014 - 2014)

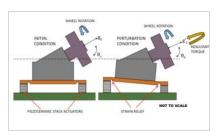
| Organizations<br>Performing Work        | Role                       | Туре                                                 | Location                      |
|-----------------------------------------|----------------------------|------------------------------------------------------|-------------------------------|
| QorTek Inc                              | Lead<br>Organization       | Industry<br>Small<br>Disadvantaged<br>Business (SDB) | Williamsport,<br>Pennsylvania |
| Goddard Space<br>Flight<br>Center(GSFC) | Supporting<br>Organization | NASA Center                                          | Greenbelt,<br>Maryland        |

| Primary U.S. Work Locations |              |
|-----------------------------|--------------|
| Maryland                    | Pennsylvania |

#### **Project Transitions**

0

June 2014: Project Start




December 2014: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/140597)

#### **Images**



#### **Project Image**

Ultraprecision Pointing Accuracy for SmallSat/CubeSat Attitude Control Systems Project Image (https://techport.nasa.gov/imag e/126353)

### Organizational Responsibility

## Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

QorTek Inc

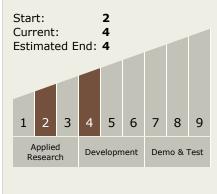
#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

### **Project Management**

#### **Program Director:**

Jason L Kessler


#### Program Manager:

Carlos Torrez

#### **Principal Investigator:**

Gregory M Bower

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Ultraprecision Pointing Accuracy for SmallSat/CubeSat Attitude Control Systems, Phase I



Completed Technology Project (2014 - 2014)

### **Technology Areas**

#### **Primary:**

- TX17 Guidance, Navigation, and Control (GN&C)
  - □ TX17.2 Navigation
    Technologies
    - ☐ TX17.2.3 Navigation Sensors

### **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

